
Introduction to Git
Benedikt Meurer (bm@os-cillation.de)

2012 / 05 / 11

1Wednesday, May 9, 12

mailto:bm@os-cillation.de
mailto:bm@os-cillation.de

Version Control
Systems

• Local Version Control Systems (SCCS, rcs)

• Central Version Control Systems (CVS,
Subversion, Perforce)

• Distributed Version Control Systems (Git,
Mercurial, Darcs, Bazaar)

2Wednesday, May 9, 12

Local Version Control
Systems

• Local Database

• Simple and Fast

• Single User

• Single Point of Failure

• No Collaboration

3Wednesday, May 9, 12

Centralized Version
Control Systems

• Central Database

• Complex and Slow

• Multi User

• Single Point of Failure

• Limited Collaboration

4Wednesday, May 9, 12

Distributed Version
Control Systems

• Distributed Database

• Complex and Fast

• Multi User

• No Single Point of Failure

• Unlimited Collaboration

5Wednesday, May 9, 12

A short history of Git

• 2002: Linux begin using proprietary DCVS
BitKeeper

• 2005: BitKeeper revoked free-of-charge
status

• April 2005: Initial release of Git by Linus

• December 2005: 1.0

6Wednesday, May 9, 12

Design Goals of Git

• Speed

• Simple Design

• Strong support for non-linear development
(thousands of parallel branches)

• Fully distributed

• Able to handle large projects like the Linux
kernel efficiently

7Wednesday, May 9, 12

Git Overview

• Snapshots, not Differences

• Nearly every Operation is Local

• Git Integrity

• Add-Only Workflows

• The Three States

8Wednesday, May 9, 12

Snapshots, not
Differences

• Traditional approach to
store file-based changes

• CVS, Subversion,
Perforce, Bazaar

• Versions like snapshots
of a mini-filesystem

• Distributed file system
with powerful tools

9Wednesday, May 9, 12

Nearly every
Operation is Local
• Most operations in Git only need local files

and resources to operate

• Full history is locally available

• Network access only required to
communicate changes with others

• No need to have access to central server
all the time

10Wednesday, May 9, 12

Git Integrity

• Everything (really, everything!) in Git is
check-summed using SHA-1

• No way to loose or corrupt data without
Git being able to detect!

• On a related note: SHA1 check-summing is
the key to Git’s distributed operation

11Wednesday, May 9, 12

Add-Only Workflows

• Nearly all Git actions only add data

• Difficult to get the system to destroy data

• Once snapshot is committed, it’s very
difficult to lose

• Even lost data can be restored easily most
of the time

12Wednesday, May 9, 12

The Three States
• Git adds a staging area

(known as “the index”)

• Changes are added to
the index first and once
ready are committed to
the (local) repository

• "If you deny the Index,
you really deny git
itself." (Linus Torvalds)

13Wednesday, May 9, 12

First-Time Git Setup

• Install Git
$ sudo apt-get install git-core

• Your Identity
$ git config --global user.name “Benedikt Meurer”

$ git config --global user.email “bm@os-cillation.de”

• Settings are stored in
/etc/gitconfig

~/.gitconfig

.git/config (in every repository)

14Wednesday, May 9, 12

mailto:bm@os-cillation.de
mailto:bm@os-cillation.de

Initializing a Repository
in an Existing Directory
• Create a Git Repository

$ git init

• Git Repository is now in .git
• Import files

$ git add *.c

$ git add README

$ git commit -m “Initial import.”

• Files committed in .git

15Wednesday, May 9, 12

Clone an Existing
(Remote) Repository

• Cloning takes a copy of a (remote) Git
Repository
$ git clone git://core.os.de/os-cillation/testing.git

• Checkout in testing, cloned Repository in
testing/.git

• This is NOT the same as svn checkout!

16Wednesday, May 9, 12

Recording Changes to
the Repository

17Wednesday, May 9, 12

Checking Status of your
Files

• Run initially after clone
$ git status

On branch master
nothing to commit (working directory clean)

• After some editing
$ touch test.c

$ git status

On branch master
Untracked files:

(use "git add <file>..." to include in what will be committed)

#

test.c

nothing added to commit but untracked files present (use "git add"
to track)

18Wednesday, May 9, 12

Tracking New Files

• To begin tracking the test.c file
$ git add test.c

• Check status again
$ git status

On branch master

Changes to be committed

(use "git reset HEAD <file>..." to unstage)

#

new file: test.c

#

19Wednesday, May 9, 12

Committing Your
Changes

• To commit all staged changes
$ git commit

• Different editor can be set using i.e.
$ git config --global core.editor vim

20Wednesday, May 9, 12

Working with Remote
Repositories

• To push your changes upstream
$ git push -u origin master

• To update all remotes
$ git remote update

• To pull changes from upstream
$ git pull origin master

21Wednesday, May 9, 12

Git Data Transport
Commands

22Wednesday, May 9, 12

Git Setup

• Gitweb
http://core.os.de/git/

• Clone URLs
ssh://git@core.os.de/path/to/project.git

git://core.os.de/path/to/project.git

• Playground
os-cillation/testing.git

23Wednesday, May 9, 12

http://core.os.de/git/
http://core.os.de/git/
mailto:git@core.os.de
mailto:git@core.os.de

Git Tutorials /
Documentation

• “Pro Git”

http://git-scm.com/book

• “Git - SVN Crash Course”

http://git-scm.com/course/svn.html

• “Visual Git Cheat Sheet”

http://ndpsoftware.com/git-cheatsheet.html

24Wednesday, May 9, 12

http://git-scm.com/book
http://git-scm.com/book
http://git-scm.com/course/svn.html
http://git-scm.com/course/svn.html
http://ndpsoftware.com/git-cheatsheet.html
http://ndpsoftware.com/git-cheatsheet.html

Git Workflows

• Git is NOT a better Subversion!

• 1001 ways to shoot yourself in the foot!

• Define proper workflows to manage
projects with Git

25Wednesday, May 9, 12

Git Workflows

• Workflows
http://tinyurl.com/os-cillation-git-workflows

• Maintainers (Integrators) / Developers

26Wednesday, May 9, 12

http://core.os.de/git/?p=gitolite-admin.git;a=blob_plain;f=gitweb/workflows.html;hb=HEAD
http://core.os.de/git/?p=gitolite-admin.git;a=blob_plain;f=gitweb/workflows.html;hb=HEAD

Git Workflows

• Development on Topic-Branches

• DON’T develop on the master Branch!

27Wednesday, May 9, 12

“Ok, got it, what now?”

• Setup Git

• Clone the testing Repository

• Familiarize with the basic Git commands
(add, checkout, commit, branch, push, pull)

• Read and follow the workflow definitions

• Have fun and bitch at Subversion... ;-)

28Wednesday, May 9, 12

