
Fast garbage compaction with interior pointers

Benedikt Meurer
Compilerbau und Softwareanalyse

Universität Siegen
D-57068 Siegen, Germany

meurer@informatik.uni-siegen.de

Abstract

This paper presents a garbage compaction algo-
rithm, which extends the well-known algorithm of
Jonkers with the ability to handle interior pointers.
It is as efficient as Jonkers’ algorithm in the absence
of interior pointers, and in practice only slightly less
efficient in the presence of interior pointers, while
at the same time, it does not impose any additional
space overhead. This, however, is partly due to the
fact that only certain kinds of interior pointers are
allowed.

1 Introduction

Compacting garbage collection is a useful technique
to implement heap storage management in modern
runtime environments. The need for compaction of
heap storage and a growing number of compaction
techniques have been presented previously.

Today there are basically two classes of com-
paction algorithms. The first class employs a new
area as large as the original heap area and compact
the heap by moving live block to a contiguous seg-
ment of the new area. Algorithms in this class are
usually referred to as copying garbage collectors or
semi-space garbage collectors [2, 3, 7, 14, 16].

The other class generally traces and marks all
storage in use, plan where the live blocks of storage
are to be moved, update each pointer to point to the
planned address of the referenced block, and finally
move each block to its planned address. Algorithms
in this class are usually referred to as mark-compact
garbage collectors [8, 9, 10, 12, 13, 15, 17, 18].

This paper deals with the well-known com-
paction algorithm presented by Jonkers [12], which

compacts live blocks within a single contiguous
heap space by sliding them to the low end of the
heap space. This algorithm is one of the most popu-
lar garbage compactors because it requires only two
heap passes, does not impose any additional space
overhead and is relatively easy to adapt. However
– in its basic form – it cannot cope with pointers
to the interior of live blocks.

We will present an extension to the basic algo-
rithm, which adds support for pointers containing
addresses of special interior cells, called interior
header cells. We start by defining the problem in
section 2. Section 3 describes the basic algorithm.
Then, in section 4, we present our extended algo-
rithm. Section 5 reviews the efficiency of the ex-
tended algorithm. Finally section 6 compares our
work with related compaction algorithms.

2 Problem

Following the original problem statement in [12] we
represent a machine memory by an array M of cells.
Every cell has a unique address, which is the index
of the cell in M . A pointer is an address or the
special value nil, which is not equal to any address
in M . We assume that each cell is large enough to
contain a pointer.

There is a subarray S of M with indices
s1, . . . , sk, called the store, which is the part of M
to be compacted. The store S contains a number
of disjoint subarrays called nodes. Every node con-
tains exactly one header cell, zero or more interior
header cells and a number of pointer cells, which
are cells that contain a pointer. The header ad-
dress of a node is the address of its header cell. An
interior address of a node is the address of one of

1

meurer@informatik.uni-siegen.de

its interior header cells. Every node thereby has
one or more addresses, formed by the header ad-
dress and the interior addresses. For the sake of
simplicity we take the first cell of a node to be the
header cell.

We assume that the contents of the header and
interior header cells are distinguishable from a
pointer. Furthermore we assume that a pointer q
in a pointer cell of a node is either nil or points to
a node, i.e. q is either nil or an address of a node.

Just before the call to the compaction routine,
the marking phase of the garbage collector will have
established the following information:

1. The addresses r1, . . . , rn of cells not contained
in S, which contain either nil or a pointer to a
node. These addresses are called root set and
form the starting points of the marking phase.

2. The header addresses l1, . . . , lm of the nodes
contained in S. These nodes have been deter-
mined by the marking phase as being live (i.e.
non-garbage).

This situation is schematically shown in Fig. 1.

M

r1 r2 . . .

S

l1 l2 lm . . .rn

Figure 1: Machine memory after marking phase

The problem now is to rearrange the nodes in S
in such a way that

1. the nodes occupy a contiguous memory area at
the lower end of S;

2. (interior) pointers in the root set r1, . . . , rn
and pointers in the pointer cells of nodes in
S still point to the same (interior) headers of
the same nodes as before;

3. the order of nodes in S is preserved.

3 Jonkers’ algorithm

In this section we describe the original algorithm
proposed by Jonkers [12]. It is based on a tech-

nique called threading first proposed by Fisher in
[8], which is also used in [5, 11, 15, 17].

Jonkers’ algorithm assumes that no interior
header cells are present. That is, all pointers within
the root set and the pointer cells of the nodes in S
are either nil or point to the first cell of a node in S.
More formally, the set of all such non-nil pointers
is a subset of {l1, . . . , ln}.1

We first describe the algorithm informally and
illustrate it by the example given in [12]. The ini-
tial situation is given in Fig. 2(a), where only the
pointers to an single node q are shown.

The algorithm starts by visiting the cells in the
root set r1, . . . , rn. For each root cell r containing
a pointer to a node q, r cannot be updated im-
mediately since the new address of the node is not
yet known. Therefore r is threaded to q. For now
it does not matter how this threading is achieved.
We will discuss that later.

Fig. 2(b) shows the situation once all cells in
the root set have been visisted this way, where the
dashed arrow indicates the is threaded to relation.
The algorithm continues by scanning the store S
twice, visiting all pointer cells of all nodes in the or-
der from lower addresses to higher addresses. Upon
visiting a node q in the first scan (Fig. 2(c)), the
address where q is to be moved to is known from
an accumulated counter. Using this information
all pointer cells threaded to q at this point are up-
dated as shown in Fig. 2(d), where updating a cell
also means unthreading it.

Subsequently all pointer cells of q containing
a pointer to a node are threaded to that node
(Fig. 2(e)). Once the first scan is done all pointer
cells in the root set will have been updated this
way. Furthermore, all pointer cells pointing for-
ward to q – in ascending address order – will have
been updated as well, and all pointer cells pointing
backward to q, including pointer cells of q itself, will
be threaded to q (Fig. 2(f)).

The second scan visits all nodes in ascending
address order again. Upon visiting a node q
(Fig. 2(g)), all pointer cells threaded to q must be
backward pointers, and neither q nor any pointer
cell threaded to q will have been moved yet. There-
fore all cells threaded to q can be correctly updated
to the new address of q as shown in Fig. 2(h). Once

1These sets will be equal if the marking algorithm is ac-
curate.

2

(j)

(i)

(h)

(g)

(f)

(e)

(d)

(c)

(b)

(a)
r q

S

Figure 2: Example run of Jonkers’ algorithm

this is done, all cells pointing to the initial address
of q will have been updated to the new address of q,
and all nodes to the left of q will have been moved
to their new locations already. Therefore it is now
safe to move q to its new location (Fig. 2(i)) as
well. Once the second scan is complete, all nodes
will have been moved and all pointers will have been
updated (Fig. 2(j)).

(a) H

(b) H

Figure 3: Example of threading

In order to fully understand the algorithm, we
have to explain how threading works in detail, es-
pecially why this threading of cells can be done
without any space overhead using the well-known
trick described in [8]. By assumption and from the

(informal) description above we know two things:

1. The first cell of a node contains the header,
which is distinguishable from any address.

2. All pointer cells threaded to a node initially
contain a pointer to that node.

Now consider the situation shown in Fig. 3(a) with
3 cells holding pointers to a node. We can trans-
form this situation in such a way that all cells
threaded to a node are chained in a list, using the
header cell of the node as list head and the orig-
inal content of the header cell as list terminator
(Fig. 3(b)). This transformation can be performed
without loss of information, since both the original
content of the header cell as well as all information
about the cells pointing to it is preserved within
the structure of the list.

Updating all cells threaded to a node is now a
matter of traversing this list, updating the cells in it
and restoring the header value of the node using the

3

list terminator. It is especially important to restore
the original header value while scanning a node,
since it may be necessary to determine the size of
the node as well as its pointer cells (during the first
scan) or to move the node (during the second scan).

Algorithm 1 Jonkers’ garbage compactor
procedure Thread(p)

if M [p] 6= nil then
q ←M [p];M [p]←M [q];M [q]← p

end if
end procedure

procedure Scan(p)
let p1, . . . , pn be the addresses of the
pointer cells of the node with address p;
for i← 1, . . . , n do

Thread(pi)
end for

end procedure

procedure Update(old, new)
p←M [old]
while IsAddress(p) do

q ←M [p];M [p]← new; p← q
end while
M [old]← p

end procedure

procedure Move(old, new)
for i = 0, . . . ,Size(old)− 1 do

M [new + i]←M [old+ i]
end for

end procedure

procedure Compact()
for i← 1, . . . , n do

Thread(ri)
end for
new ← s1
for i← 1, . . . ,m do

Update(li, new);Scan(li)
new ← new + Size(li)

end for
new ← s1
for i← 1, . . . ,m do

Update(li, new);Move(li, new)
new ← new + Size(li)

end for
end procedure

The whole procedure is described formally in Al-
gorithm 1 using pseudocode.

4 Our algorithm

Jonkers’ original algorithm – as described in the
previous section – does not work if pointers are al-

lowed to point not only to header addresses but
also to interior header addresses. This is because
interior headers are ignored by the Update proce-
dure. If there would be a way to reliably locate all
interior headers of a node, fixing this shortcoming
would be a matter of adjusting the Update pro-
cedure to also update pointer cells threaded to the
interior headers. However it may not be feasible,
indeed it may even be impossible, to implement this
in practice.

Instead, we assume that, given a pointer to an in-
terior header, it is possible to determine the node,
and hence the header of the node, to which this in-
terior address belongs. This is a realistic assump-
tion and might also be necessary for the marking
algorithm anyway.

In this section we will present an extension to
Jonkers’ algorithm, which is able to thread point-
ers to interior headers of a node and update them
properly to the new address of the interior header
to which the node will be moved. Our extension
shares the good properties of the original algorithm,
which means it does not impose any additional
space overhead and requires linear time in practice.
It does however place additional restrictions on the
shape of pointers and cells. Furthermore it assumes
that, given the node header and the interior offset,
it is possible to reconstruct an interior header.

Consider the situation given in Fig. 4(a) with
three pointers r1, r2 and r3 pointing to a node,
where r1 points to the header H of the node while
r2 and r3 point to the interior headers IH1 and IH2

respectively. Upon visiting r1 it can be threaded
to the node as described in the previous section
(Fig. 4(b)).

However the pointer cell r2 cannot simply be
threaded to the interior header IH1, since by as-
sumption we are unable to locate all interior head-
ers of a node, and as such the pointer cells threaded
to an interior header of a node would not be up-
dated.

The basic idea of our algorithm is to thread inte-
rior pointer cells to the node header just like cells
pointing to the header of a node. Since the interior
pointer cells need special treatment during update
we chain both the interior header cell and the in-
terior pointer cell, while tagging the pointer to the
interior header in special way as shown in Fig. 4(c).
Once all pointers and interior pointers to a node are
threaded, the situation looks as given in Fig. 4(d).

4

(a) H IH1 IH2

r1 r2 r3

(b) IH1 IH2

H
r1 r2 r3

(c) IH2

I
r1 r2

H
r3

(d)

r1
I

r2
H

r3
I

Figure 4: Example of threading with interior point-
ers

When updating cells we replace pointers with the
new address of the node as described in Jonkers’ al-
gorithm. Upon reaching a tagged pointer we know
that the cell pointed to originally contained an inte-
rior header and the remaining cells in the chain (up
to the terminating header or up to the next tagged
pointer) originally pointed to this interior header.
Therefore we reconstruct the interior header, store
it into the cell pointed to by the tagged pointer,
set new to the address of the interior header at the
new location of the node and continue updating the
remaining cells in the list.

While the original algorithm requires the ability
to distinguish header values from addresses, our
algorithm imposes additional constraints. This is
because threading now requires the ability to dis-
tinguish headers and interior headers, and updat-
ing now requires the ability to distinguish headers,
threaded pointers and pointers to interior header
cells. To sum up, we need to distinguish the fol-
lowing:

1. Values of node headers

2. Pointers to node headers

3. Values of interior headers

Algorithm 2 Threading with interior pointers
procedure Thread(p)

q ←M [p]
if IsInteriorHeader(M [q]) then

o← NodeOfInteriorAddress(q)
while IsPointer(M [o]) do

o←M [o]
end while
M [p]←M [o]
M [q]← p
M [o]← InteriorPointer(q)

else
M [p]←M [q]
M [q]← p

end if
end procedure

procedure Update(old, new)
h←M [old]
while not IsHeader(h) do

h←M [Pointer(h)]
end while
p←M [old]
n← new
while not IsHeader(p) do

if IsPointer(p) then
q ←M [p]
M [p]← n

else . p must be an interior pointer
p← Pointer(p)
n← new + (p− old)
q ←M [p]
M [p]←MakeInteriorHeader(h, old, p)

end if
p← q

end while
M [old]← p

end procedure

4. Pointers to interior headers

Given that we are able to distinguish the above,
we can implement the changes necessary to handle
interior pointers as shown in Algorithm 2. The rest
of the algorithm remains unchanged.

It is easy to see that the new algorithm is cor-
rect. Cells with pointers to the node header will be
chained to the beginning of the threaded list before
any cells with pointers to interior headers. So these
pointers will be updated with the new location of
the node.

Cells with pointers to interior headers will al-
ways be linked in between the tagged pointer that
contains the address of this interior header and
the next tagged pointer that contains the ad-
dress of another interior header (or the terminating
node header). Furthermore since interior headers

5

threaded to a node are replaced with pointers, the
same interior cell cannot be threaded more than
once. Therefore each interior header cell on the
list is updated exactly once and the pointer cells
threaded to it will be updated to the correct inte-
rior address at the new location of the node.

5 Efficiency

The original algorithm visits every node twice, and
performs at most one test, thread and update op-
eration per pointer cell, and exactly one move per
node. This results in a worst-case time complexity
of O(k + n), where k is the number of cells in the
store and n is the number of cells in the root set.
Since the root set is usually smaller than the store,
Jonkers’ algorithm is said to be linear in the size of
the store.

The extended algorithm performs the same op-
erations. However, in contrast to the original algo-
rithm, Thread has to traverse the list of previously
threaded pointer cells once for each interior header
being pointed to. The worst-case time complexity
is therefore O(k · (k + n)). This seems to be a ma-
jor regression compared to the original algorithm
upon first sight. However, in practice the number
of interior headers is probably low2. Furthermore it
has been observed that most live objects in modern
applications have only a single referent [1, 4, 6, 19].
Hence, within a realistic application, the Thread
procedure requires constant time, and as such, the
whole algorithm is linear in the size of the store.

Moreover, under the assumption that appropri-
ate header and interior header cells are available for
the cells, the extended algorithm requires no space
overhead. Since each node usually has to carry ad-
ditional information such as size and type of the
node content, the runtime environment will have
to reserve space for this kind of information any-
way (usually as part of a header word). Interior
headers on the other hand might require some ex-
tra effort, and will usually carry information such
as the offset of the interior address relative to the
address of the first cell. This kind of information is
often already required by the marking phase of the
garbage collector.

2Note that the worst-case time complexity of the ex-
tended algorithm is still O(k + n) in the absence of interior
headers.

The algorithm as described here leaves some
room for performance improvements with respect
to effective garbage collection time. For example,
the Update routine as shown in Algorithm 2 first
traverses the list of threaded cells to determine the
original header of the node. This information is
used to reconstruct the interior headers within this
block. However, since interior headers should be
rare, it might be better to determine this informa-
tion only on-demand. In fact, it might even be pos-
sible to get by without this additional list traver-
sal if the reconstruction algorithm does not need
the original node header at all (i.e. if the interior
header contains only the offset of the interior cell
relative to the first cell of the node).

The additional requirement to distinguish four
different kinds of values is also rather simple to full-
fil in practice. Under the assumption that all words
are aligned on 4-byte address boundaries (which
may already be required by the addressing con-
straints of the target machine), one can use the
two least significant bits of machine words to dis-
tinguish 4 different kinds of values.

6 Related work

There exists a different class of moving com-
paction algorithms, which perform pointer adjust-
ments based on range checks within a break table
[9, 10, 13, 18], and therefore support interior point-
ers out of the box. However these algorithms either
do not operate in time linear to the size of the store
[9, 10, 18], or require substantial space overhead
[13, 18].

The algorithm presented in [15] is somewhat sim-
ilar to the basic algorithm described in section 3,
and is capable of updating arbitrary interior point-
ers. But it is less efficient than the algorithm de-
scribed here and requires additional space overhead
(one mark bit per cell).

7 Conclusions

We have described an algorithm that extends
Jonkers’ fast garbage compaction algorithm with
the ability to handle pointers to certain interior
cells of live objects without any additional space
overhead. The extended algorithm is linear in the

6

size of the store in practice and requires one addi-
tional bit per value – compared with the require-
ments of the original algorithm – to differentiate
four kinds of cell values relevant for threading and
updating the pointer cells.

Acknowledgements

We would like to thank Kurt Sieber and Christian
Uhrhan for their careful proof-reading.

References

[1] S. M. Blackburn, R. Garner, C. Hoffmann,
A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump,
H. B. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. The dacapo bench-
marks: java benchmarking development and
analysis. In OOPSLA, pages 169–190, 2006.

[2] C. J. Cheney. A non-recursive list compacting
algorithm. CACM, 13(11):677–8, Nov 1970.

[3] D. W. Clark. An efficient list moving algorithm
using constant workspace. CACM, 19(6):352–
354, Jun 1976.

[4] L. P. Deutsch and D. G. Bobrow. An effi-
cient, incremental, automatic garbage collec-
tor. Commun. ACM, 19(9):522–526, 1976.

[5] R. B. K. Dewar and A. P. McCann. MACRO
SPITBOL — a SNOBOL4 compiler. SPE,
7(1):95–113, 1977.

[6] S. Dieckmann and U. Hölzle. A study of the al-
location behavior of the specjvm98 java bench-
mark. In ECOOP, pages 92–115, 1999.

[7] R. R. Fenichel and J. C. Yochelson. A Lisp
garbage collector for virtual memory computer
systems. CACM, 12(11):611–612, Nov 1969.

[8] D. A. Fisher. Bounded workspace garbage
collection in an address-order preserving list
processing environment. Inf. Process. Lett.,
3(1):29–32, 1974.

[9] J. P. Fitch and A. C. Norman. A note on com-
pacting garbage collection. CompJ, 21(1):31–
34, Feb 1978.

[10] B. K. Haddon and W. M. Waite. A compaction
procedure for variable length storage elements.
CompJ, 10:162–165, Aug 1967.

[11] D. R. Hanson. Storage management for an
implementation of Snobol 4. SPE, 7(2):179–
192, 1977.

[12] H. B. M. Jonkers. A fast garbage compaction
algorithm. Inf. Process. Lett., 9(1):26–30,
1979.

[13] B. Lang and B. Wegbreit. Fast compactifica-
tion. Technical Report 25–72, Harvard Uni-
versity, Cambridge, MA, Nov 1972.

[14] M. L. Minsky. A Lisp garbage collector algo-
rithm using serial secondary storage. Technical
Report Memo 58 (rev.), Project MAC, MIT,
Cambridge, MA, Dec 1963.

[15] F. L. Morris. A time- and space-efficient
garbage compaction algorithm. Commun.
ACM, 21(8):662–665, 1978.

[16] E. M. Reingold. A non-recursive list moving
algorithm. CACM, 16(5):305–307, May 1973.

[17] L.-E. Thorelli. A fast compactifying garbage
collector. BIT, 16(4):426–441, 1976.

[18] B. Wegbreit. A generalised compactifying
garbage collector. CompJ, 15(3):204–208, Aug
1972.

[19] M. Wegiel and C. Krintz. The single-referent
collector: Optimizing compaction for the com-
mon case. ACM Trans. Archit. Code Optim.,
6(4):1–26, 2009.

7

	Introduction
	Problem
	Jonkers' algorithm
	Our algorithm
	Efficiency
	Related work
	Conclusions

