
Blocks and
Grand Central Dispatch

Benedikt Meurer
CocoaHeads Siegen

2011/08/10

http://benediktmeurer.de
http://benediktmeurer.de
http://cocoaheads.informatik.uni-siegen.de
http://cocoaheads.informatik.uni-siegen.de

• Blocks

• Blocks in C

• Blocks in Objective-C

• Blocks in Cocoa(Touch)

• Grand Central Dispatch

Blocks and
Grand Central Dispatch

Blocks

Blocks

• Nonstandard extension to the C, C++ and
Objective-C/C++ languages by Apple

• Available with clang and Apple’s gcc
(starting with OS X 10.6 and iOS 4.0)

• Like functions, but written inline with the
rest of your code

• Closures or λ-expressions for C

A simple example
#include <Block.h>
#include <stdio.h>
typedef int (^IntBlock)();

IntBlock CreateCounter(int start, int increment) {
 __block int c = start;
 return Block_copy(^{
 int result = c;
 c += increment;
 return result;
 });
}

int main(int argc, char *argv[]) {
 IntBlock counter = CreateCounter(7, 2);
 printf(“1st: %d\n”, counter());
 printf(“2nd: %d\n”, counter());
 Block_release(counter);
 return 0;
}

A simple example

$ clang -fblocks example1.c -o example1
$./example1
1st: 7
2nd: 9

• Compile and run the example

What to do with’em?
• Custom control structures (like in Ruby or

functional languages), i.e.

• Callbacks

• Delayed execution

• Building blocks for concurrency

[1, 2, 3, 4].each do |i|
! puts i
end

List.iter
 (fun i -> print_int i)
 [1; 2; 3; 4]

Blocks in C

Blocks in C

• Block types similar to function types

• New syntax for declaring blocks

• Abbreviations

double (*funcptr)(int);
typedef int (*FuncType)();

double (^blkptr)(int);
typedef int (^BlkType)();

blkvar = ^ type (type arg1, ..., type argn) {
 statements;
 return value;
};

^ type { ... } skip empty argument list
^ { ... } infers return type

Calling blocks

• Just like function calls
typedef int (^IntBlock)();
IntBlock solutionBlock = ^{
 return 42;
};

int solution = solutionBlock();

int (^add2solutionBlock)(int) = ^int (int x) {
 return solution + x;
};

int solutionPlus7 = add2solution(7);

Using variables in
closure scope

• Just works for read-only access (no need
for Java’s final qualifier)

• Variables writable from inside closures
need __block qualifier, i.e.
void foreach(List *list, void (^block)(List *)) {
 for (; list; list = list->next) block(list);
}
...
List *list = ...;
__block int count = 0;
foreach(list, ^void(CFTypeRef element) {
 count++;
});
printf(“Number of items in list: %d\n”, count);

The magical __block
typedef struct { int (^up)(); int (^down)(); } Counter;
Counter CreateCounter(int start, int inc) {
 __block int i = start;
 Counter c = {
 .up = Block_copy(^{ int r = i; i += inc; return r; }),
 .down = Block_copy(^{ int r = i; i -= inc; return r; })
 };
 return c;
}

int main(int argc, char *argv[]) {
 Counter c = CreateCounter(10, 1);
 printf(“1st: %d\n”, c.up());
 printf(“2nd: %d\n”, c.up());
 printf(“3rd: %d\n”, c.down());
 Block_release(c.up);
 Block_release(c.down);
 return 0;
}

The magical __block
typedef struct { int (^up)(); int (^down)(); } Counter;
Counter CreateCounter(int start, int inc) {
 __block int i = start;
 Counter c = {
 .up = Block_copy(^{ int r = i; i += inc; return r; }),
 .down = Block_copy(^{ int r = i; i -= inc; return r; })
 };
 return c;
}

int main(int argc, char *argv[]) {
 Counter c = CreateCounter(10, 1);
 printf(“1st: %d\n”, c.up());
 printf(“2nd: %d\n”, c.up());
 printf(“3rd: %d\n”, c.down());
 Block_release(c.up);
 Block_release(c.down);
 return 0;
}

Shared
state

i survived!

The magical __block

• i survived it’s enclosing scope

• impossible for an automatic (stack)variable

• conclusio: __block does some heap-
allocation magic

• We’ll get to that soon... some basics about
block memory management first

Memory Management

• Block consists of code and state

• Block code just like all other code, ends up
in .text section

• Block state is the variables enclosed and
some internal stuff

• Memory for block state must be managed
somehow - remember, we’re talking C!

Memory Management

• Declaring a block in function scope actually
creates a block literal on the stack
int (^one)() = ^{ return 1; };

// compiles to a separate function
static int one_invoke(struct Block_literal_1 *b) {
 return 1;
}
...
// and the following code in scope
// (see Block-ABI-Apple.txt for types)
struct Block_literal_1 one_storage = {
 .isa = &_NSConcreteStackBlock,
 .invoke = one_invoke,...
};
struct Block_literal_1 *one = &one_storage;

http://clang.llvm.org/docs/Block-ABI-Apple.txt
http://clang.llvm.org/docs/Block-ABI-Apple.txt

Memory Management

• Declaring a block in global scope actually
creates a block literal in the .data section
static int (^one)() = ^{ return 1; };

// compiles to a separate function
static int one_invoke(struct Block_literal_1 *b) {
 return 1;
}
...
// and the following code in global scope
// (see Block-ABI-Apple.txt for types)
static struct Block_literal_1 one_storage = {
 .isa = &_NSConcreteGlobalBlock,
 .invoke = one_invoke,...
};
static struct Block_literal_1 *one = &one_storage;

http://clang.llvm.org/docs/Block-ABI-Apple.txt
http://clang.llvm.org/docs/Block-ABI-Apple.txt

Memory Management

• Stack-allocated block literals are only valid
in their declaring scope

• That’s why we used Block_copy() in the
examples

Block_copy() and
Block_release()

• Blocks in local scope are stack-allocated,
because:

+ Stack allocation is fast/cheap

+ Deallocation is automatic (for free)

+ Most blocks don’t need to survive their
declaring scope

• GCC nested functions feature already does
this... but Blocks do more!

Block_copy() and
Block_release()

• Block_copy() copies a block from stack
to heap memory (or retains a block already
in heap memory)

• Block_release() releases a block in heap
memory

• Two distinct classes
_NSConcreteStackBlock and
_NSConcreteGlobalBlock to make this
explicit

Block_copy() and
Block_release()

Block_copy()

_NSConcreteStackBlock _NSConcreteGlobalBlock

free()’d

Block_release()

Stack Heap

Block_copy() and
Block_release()

• Blocks start out stack-allocated

• Block_copy() to copy to/retain in heap

• Block_release() to release in heap

• Rule of thumb: Copy blocks whenever they
may survive their declaring scope!!

Block_copy() and
Block_release()

typedef void (^Block)();

Block f() { // obvious bug
 return ^{ ... };
}

void g() { // tricky bug
 Block b;
 if (whatever) {
 b = ^{ ... };
 }
 else {
 b = ^{ ... };
 }
 b(); // called out of block literal scope
}

Now what about this
__block thing?

• Modifier __block only valid for variables
with automatic scope

• Start out life in stack memory

• Moved to heap during Block_copy()

• Beware: Address of __block variables may
change!

Now what about this
__block thing?

#include <stdio.h>
#include <Block.h>
int main(int argc, char *argv[]) {
 __block int i = 0;
 printf("&i = %p\n", &i);
 void (^b)() = ^{ ++i; };
 printf("&i = %p\n", &i);
 b = Block_copy(b);
 printf("&i = %p\n", &i);
 return 0;
}

$./a.out
&i = 0x7fff6a9a7a70
&i = 0x7fff6a9a7a70
&i = 0x10ae00868

Rule of thumb: Don’t take address of __block variables!

Blocks in Objective-C

Blocks in Objective-C

• This is what makes blocks really useful:
Blocks are Objective-C objects!

• Both block classes inherit NSObject

• There’s -copy for Block_copy()

• and -release for Block_release()

• but there’s also -retain ?!

Blocks are Objects

• The conventions for Objective-C objects
say that -retain MUST return the same
instance that it was called with. This means
that retain cannot call -copy!

• This can lead to really nasty bugs!

• Rule of thumb: -copy and -autorelease
blocks prior to storing them anywhere
(properties, collections, etc.).

Blocks are Objects
typedef void (^Block)();

NSArray *f() { // wrong!
 return [NSArray arrayWithObject:^{ ... }];
}

NSArray *f() { // correct!
 return [NSArray arrayWithObject:[[^{
 ..
 } copy] autorelease]];
}

@property (retain) Block block; // bad idea!

@property (copy) Block block; // better safe than sorry!

Blocks are Objects

• Blocks in Objective-C have one more very
important difference from blocks in C: All
local objects are automatically retained as
they are referenced!
- (void)someMethod
{
 id someObject = ...;
 ... ^{
 [someObject someMessage]; // retains someObject
 };
 ... ^{
 someIvar += 10; // retains self
 };
}

Blocks in Cocoa(Touch)

Blocks in Cocoa(Touch)

• Apple’s use of blocks is currently limited

• Only a few new APIs are using blocks to
their full potential (i.e. AssetsLibrary)

• Blocks support in core frameworks via 3rd
party libraries

3rd Party Libraries

• BMKit (github.com/bmeurer/BMKit)

• BlockKit (github.com/nickpaulson/BlockKit)

• BlocksKit (github.com/zwaldowski/
BlocksKit)

• etc.

http://github.com/bmeurer/BMKit
http://github.com/bmeurer/BMKit
https://github.com/nickpaulson/BlockKit
https://github.com/nickpaulson/BlockKit
https://github.com/zwaldowski/BlocksKit
https://github.com/zwaldowski/BlocksKit
https://github.com/zwaldowski/BlocksKit
https://github.com/zwaldowski/BlocksKit

Example from BMKit
typedef void (^BMBlock)();
@interface NSThread (BMKitAdditions)
- (id)initWithBlock:(BMBlock)aBlock;
@end

@implementation NSThread (BMKitAdditions)
+ (void)BM_invokeBlock:(BMBlock)aBlock {
 if (!aBlock) return;
 NSAutoreleasePool *pool = [NSAutoreleasePool new];
 aBlock();
 [pool drain];
}
- (id)initWithBlock:(BMBlock)aBlock {
 return [self initWithTarget:[NSThread class]
 selector:@selector(BM_invokeBlock:)
 object:[[aBlock copy] autorelease]];
}
@end

Grand Central Dispatch

Grand Central Dispatch

• Available for OS X 10.6+, iOS 4.0+,
FreeBSD 8.1+

• “The key innovation of GCD is shifting the
responsibility for managing threads and
their execution from applications to the
operating system” (Apple Marketing)

• But it’s more (Developer’s POV)

Grand Central Dispatch

• The Core: Task Parallelism based on Thread
Pool Pattern

• Global thread pooling (Pthread
Workqueues, XNU part)

• GCD based on threads, but hides (most)
nasty details of concurrent programming

• Tightly integrated with Cocoa(Touch)

Grand Central Dispatch

• Works by queueing up tasks and scheduling
them for execution depending on available
processing resources (CPU only)

• Task either blocks or functions

• Work items can be associated with event
sources (sockets, timers, etc.)

• Helps to avoid threading bugs (Deadlocks,
Priority Inversion, etc.) by design

GCD building blocks

• Dispatch Queues

• Dispatch Groups

• Dispatch Sources

• Dispatch Semaphores

Dispatch Queues

• Maintain a queue of tasks and execute them
on their turn

• Serial or concurrent

• Optimal scheduling based on availability

• Serial queues can avoid locks on shared
resources

• Less code, easier to get right

Dispatch Groups

• Group several tasks

• Wait for completion of all grouped tasks

• Integrated with Dispatch Queues

Dispatch Semaphores

• Control concurrent execution of tasks

• Similar to POSIX Semaphores

• Better avoid them, use queues

Dispatch Sources

• Combine Dispatch Queues with event
sources

• Several sources (sockets, timers, signals,
etc.)

• Integration with CoreFoundation /
Foundation run loops

Don’t block main thread
// Bad idea: blocks main thread / UI
- (IBAction)computeSomethingDidActivate:(id)sender {
 NSString *result = [_businessLogic computeSomething];
 _resultLabel.text = result;
}

// Do it asynchronously using dispatch queues!
- (IBAction)computeSomethingDidActivate:(id)sender {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 NSString *result = [_businessLogic computeSomething];
 dispatch_async(dispatch_get_main_queue(), ^{
 _resultLabel.text = result;
 });
 });
}

Avoid locks
Resource *myResource = ...;
dispatch_queue_t myQueue =
 dispatch_queue_create(“com.example.myQueue”, NULL);
...
void doSomethingWithResource() {
 dispatch_async(myQueue, ^{
 // do whatever with myResource
 ...
 });
}
void doSomethingWithResourceAndWait() {
 dispatch_sync(myQueue, ^{
 // do whatever with myResource
 ...
 });
}

Parallelize loops

// A simple for loop
for (i = 0; i < count; ++i) {
 output[i] = process(input, i);
}

// Not as easy as OpenMP, but less trouble
dispatch_apply(count, dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^(size_t i) {
 output[i] = process(input, i);
});

GCD is not all magic

• APIs used concurrently must be thread-
safe / reentrant!

• Deadlock / Priority Inversion less likely but
still possible, i.e.

void deadlock(dispatch_queue_t queue) {
 dispatch_sync(queue, ^{
 dispatch_sync(queue, ^{
 // we never get here!
 });
 });
}

Real world example

• FreeBSD developer Robert Watson ported
the Apache HTTP server to GCD

• Implemented as MPM (Multi-Processing
Module)

• GCD MPM had 1/2 to 1/3 the number of
lines as other thread MPMs

GCD advantages

• Multicore programming made easy

• No need to mess with threads, thread
pools and locking issues

• Think in tasks and task queues

• Tightly integrated with Cocoa and Blocks

• You’ll be addicted to GCD once you know
it!

Summary

• Blocks puts back the fun in (Objective-)C
programming (may also help C++)

• New functional style programming, a lot
less code

• GCD brings multicore programming to the
masses, no more threading headaches

• Available with OS X 10.6+ and iOS 4.0+
and recent clang on other platforms

