Blocks and
Grand Central Dispatch

Benedikt Meurer

m CocoaHeads Siegen

2011/08/10

http://benediktmeurer.de
http://benediktmeurer.de
http://cocoaheads.informatik.uni-siegen.de
http://cocoaheads.informatik.uni-siegen.de

Blocks and
Grand Central Dispatch

® Blocks
® Blocks in C
® Blocks in Objective-C
® Blocks in Cocoa(Touch)

® Grand Central Dispatch

Blocks

Blocks

® Nonstandard extension to the C, C++ and
Objective-C/C++ languages by Apple

® Available with clang and Apple’s gcc
(starting with OS X 0.6 and iOS 4.0)

® Like functions, but written inline with the
rest of your code

® Closures or A-expressions for C

A simple example

#include <Block.h>
#include <stdio.h>
typedef int ("IntBlock)();

IntBlock CreateCounter(int start, int increment) {
__block int c = start;
return Block copy(”{
int result = c;
c += increment;
return result;

})
}

int main(int argc, char *argv[]) {
IntBlock counter = CreateCounter(7, 2);
printf(“1lst: %d\n”, counter());

printf(“2nd: %d\n”, counter());
Block release(counter);
return O;

A simple example

® Compile and run the example

S clang -fblocks examplel.c -0 examplel
S ./examplel

lst: 7

2nd: 9

What to do with’em!?

Custom control structures (like in Ruby or
functional languages), i.e.

[1, 2, 3, 4].each do |i] List.iter

puts 1 (fun 1 -> print int 1)
end [1; 2; 3; 4]
Callbacks

Delayed execution

Building blocks for concurrency

Blocks in C

Blocks in C

® Block types similar to function types
double (*funcptr) (int); double (“blkptr) (int);
typedef int (*FuncType)(); typedef int ("BlkType)();

® New syntax for declaring blocks

blkvar = © type (type argl, ..., type argn) {
statements;
return value;

}i

® Abbreviations
~ type { ... } Skip empty argument list
SR ST infers return type

Calling blocks

® Just like function calls

typedef int ("IntBlock)();
IntBlock solutionBlock = "{
return 42;

}i
int solution = solutionBlock();

int ("add2solutionBlock) (int) = "int (int x) {
return solution + x;

}i

int solutionPlus7 = add2solution(7);

Using variables in
closure scope

® Just works for read-only access (no need
for Java’s fina1 qualifier)

® Variables writable from inside closures
need _ niock qualifier, i.e.

void foreach(List *1list, void ("block)(List *)) {
for (; list; 1list = list->next) block(list);
}

List *1list = ...;

__block int count = 0;

foreach(list, “"void(CFTypeRef element) {
count++;

})i

printf (“Number of items in list: %d\n”, count);

The magical _block

typedef struct { int ("up)(); int ("down)(); } Counter;
Counter CreateCounter(int start, int inc) {
__block int 1 = start;
Counter ¢ = {
.up = Block copy("{ int r = 1; i += inc; return r; }),

.down = Block copy(”"{ int r 1; 1 -= inc; return r; })
}i
return c;
}
int main(int argc, char *argv[]) {

Counter c¢ = CreateCounter (10, 1);
printf(“1st: %d\n”, c.up());
printf(“2nd: %d\n”, c.up());
printf(“3rd: %d\n”, c.down());
Block release(c.up);

Block release(c.down);

return 0;

e magical block

ct { int ("up)(); int ("down)(); } Counter;
Counter Crex¥eCounter(int start, int inc) {
__block int '1 = start;
Counter ¢ = {
.up = Block copy("{ int r = 1i;

1 += inc; return r; }),
v

.down = Block copy(”"{ int r 1; 1 -= inc; return r; })
i
return c;
}
int main(int argc, char *argv[]) {

Counter ¢ = CreateCounter (10, 1); 4////"7
printf(“1st: %d\n”, c.up());

printf(“2nd: %d\n”, c.up()); i survived!
printf(#“3rd: %d\n”, c.down());

Block release(c.up);
Block release(c.down);
return 0;

The magical _block

® i survived it’s enclosing scope
® impossible for an automatic (stack)variable

® conclusio: block does some heap-
allocation magic

® We'll get to that soon... some basics about
block memory management first

Memory Management

® Block consists of code and state

® Block code just like all other code, ends up
In .text section

® Block state is the variables enclosed and
some internal stuff

® Memory for block state must be managed
somehow - remember; we're talking C!

Memory Management

® Declaring a block in function scope actually
creates a block literal on the stack

int ("one)() = *{ return 1; };

// compiles to a separate function
static int one invoke(struct Block literal 1 *b) {
return 1;

}

// and the following code in scope
// (see Block-ABI-Apple.txt for types)

struct Block literal 1 one storage = {
.1sa = & NSConcreteStackBlock,
.invoke = one invoke, ...

}i

struct Block literal 1 *one = &one storage;

http://clang.llvm.org/docs/Block-ABI-Apple.txt
http://clang.llvm.org/docs/Block-ABI-Apple.txt

Memory Management

® Declaring a block in global scope actually
creates a block literal in the .data section

static int (“one)() = "{ return 1; };

// compiles to a separate function
static int one invoke(struct Block literal 1 *b) {
return 1;

}

// and the following code in global scope
// (see Block-ABI-Apple.txt for types)

static struct Block literal 1 one storage = {
.1sa = & NSConcreteGlobalBlock,
.invoke = one invoke, ...

}i

static struct Block literal 1 *one = &one storage;

http://clang.llvm.org/docs/Block-ABI-Apple.txt
http://clang.llvm.org/docs/Block-ABI-Apple.txt

Memory Management

® Stack-allocated block literals are only valid
in their declaring scope

® That’s why we used Block copy() in the
examples

Block copy() and
Block release()

® Blocks in local scope are stack-allocated,
because:

+ Stack allocation is fast/cheap
+ Deallocation is automatic (for free)

+ Most blocks don’t need to survive their
declaring scope

® GCC nested functions feature already does
this... but Blocks do more!

Block copy() and
Block release()

® Block copy() copies a block from stack
to heap memory (or retains a block already
in heap memory)

® Block release() releases a block in heap
memory

® [wo distinct classes
_NSConcreteStackBlock and
- NSConcreteGlobalBlock to make this
explicit

Block copy() and
Block release()

Stack Heap
4) 4)
_NSConcreteStackBlock _NSConcreteGlobalBlock
Block copy()
*)
- J . J

free()d

Block copy() and
Block release()

® Blocks start out stack-allocated
® Block copy() to copy to/retain in heap
® Block release() to release in heap

® Rule of thumb: Copy blocks whenever they
may survive their declaring scope!!

Block copy() and
Block release()

typedef void ("Block) ();

Block f() { // obvious bug

return “{ ... };
}
void g() { // tricky bug
Block b;
if (whatever) {
b="{ ... };
}
else {
b="{ ... };
}
b(); // called out of block literal scope

}

Now what about this
__block thing!?

Modifier _ block only valid for variables
with automatic scope

Start out life in stack memory
Moved to heap during Block copy ()

Beware: Address of _ block variables may
change!

Now what about this
__block thing!?

#include <stdio.h> S ./a.out

#include <Block.h> &1 = 0x7fff6a9a7a70

int main(int argc, char *argv[]) { &1 = 0x7fff6a%9a7a70
__block int i = 0; &1 = 0x10ae00868

printf("&i = %p\n", &i);
void ("b)() = "{ ++i; };
printf("&i = %p\n", &i);
b = Block copy(b);
printf("&i = gp\n", &i);
return O0;

Rule of thumb: Don’t take address of block variables!

Blocks in Objective-C

Blocks in Objective-C

® This is what makes blocks really useful:
Blocks are Objective-C objects!

® Both block classes inherit NSObject
® There’s —-copy for Block copy()
® and -release for Block release()

® but there’s also —-retain ?!

Blocks are Objects

® The conventions for Objective-C objects
say that -retain MUST return the same
instance that it was called with. This means
that retain cannot call -copy!

® This can lead to really nasty bugs!

® Rule of thumb: -copy and -autorelease
blocks prior to storing them anywhere
(properties, collections, etc.).

Blocks are Objects

typedef void ("Block) ();

NSArray *f() { // wrong!
return [NSArray arrayWithObject:"{ ... }1;

}

NSArray *f() { // correct!
return [NSArray arrayWithObject:[["{

} copy] autorelease]];

}

@property (retain) Block block; // bad idea!

@property (copy) Block block; // better safe than sorry!

Blocks are Objects

® Blocks in Objective-C have one more very
important difference from blocks in C:All

local objects are automatically retained as
they are referenced!

- (void)someMethod

{

id someObject = ..
. {

[someObject someMessage]; // retains someObject

°
M 4

i

ce.

somelIvar += 10; // retains self
}i

}

Blocks in Cocoa(Touch)

Blocks in Cocoa(Touch)

® Apple’s use of blocks is currently limited

® Only a few new APIs are using blocks to
their full potential (i.e.AssetsLibrary)

® Blocks support in core frameworks via 3rd
party libraries

3rd Party Libraries

BMKit (github.com/bmeurer/BMKit)

BlockKit (github.com/nickpaulson/BlockKit)

BlocksKit (github.com/zwaldowski/
BlocksKit)

etc.

http://github.com/bmeurer/BMKit
http://github.com/bmeurer/BMKit
https://github.com/nickpaulson/BlockKit
https://github.com/nickpaulson/BlockKit
https://github.com/zwaldowski/BlocksKit
https://github.com/zwaldowski/BlocksKit
https://github.com/zwaldowski/BlocksKit
https://github.com/zwaldowski/BlocksKit

Example from BMKit

typedef void ("BMBlock) ();
@interface NSThread (BMKitAdditions)
- (id)initWithBlock: (BMBlock)aBlock;
@end

@implementation NSThread (BMKitAdditions)
+ (void)BM invokeBlock: (BMBlock)aBlock {
if (!aBlock) return;
NSAutoreleasePool *pool = [NSAutoreleasePool new];
aBlock();
[pool drain];

- (id)initWithBlock: (BMBlock)aBlock {
return [self initWithTarget:[NSThread class]
selector:@selector (BM invokeBlock:)
object:[[aBlock copy] autorelease]];

@end

Grand Central Dispatch

Grand Central Dispatch

® Available for OS X 10.6+,i0S 4.0+,
FreeBSD 8.1+

® “The key innovation of GCD is shifting the
responsibility for managing threads and
their execution from applications to the
operating system” (Apple Marketing)

® But it’'s more (Developer’s POV)

Grand Central Dispatch

® [he Core:Task Parallelism based on Thread
Pool Pattern

® Global thread pooling (Pthread
Workqueues, XNU part)

® GCD based on threads, but hides (most)
nasty details of concurrent programming

® Tightly integrated with Cocoa(Touch)

Grand Central Dispatch

® Works by queueing up tasks and scheduling
them for execution depending on available
processing resources (CPU only)

® TJask either blocks or functions

® \Work items can be associated with event
sources (sockets, timers, etc.)

® Helps to avoid threading bugs (Deadlocks,
Priority Inversion, etc.) by design

GCD building blocks

Dispatch Queues
Dispatch Groups
Dispatch Sources

Dispatch Semaphores

Dispatch Queues

Maintain a queue of tasks and execute them
on their turn

Serial or concurrent
Optimal scheduling based on availability

Serial queues can avoid locks on shared
resources

Less code, easier to get right

Dispatch Groups

® Group several tasks
® Wit for completion of all grouped tasks

® |ntegrated with Dispatch Queues

Dispatch Semaphores

® Control concurrent execution of tasks
® Similar to POSIX Semaphores

® Better avoid them, use queues

Dispatch Sources

Combine Dispatch Queues with event
sources

Several sources (sockets, timers, signals,
etc.)

Integration with CoreFoundation /
Foundation run loops

Don’t block main thread

// Bad idea: blocks main thread / UI

— (IBAction)computeSomethingDidActivate: (id)sender {
NSString *result = [businessLogic computeSomething];
_resultLabel.text = result;

}

// Do it asynchronously using dispatch queues!
— (IBAction)computeSomethingDidActivate: (id)sender {
dispatch async(dispatch get global queue(
DISPATCH QUEUE PRIORITY DEFAULT, 0), *{
NSString *result = [businessLogic computeSomething];
dispatch async(dispatch get main queue(), “{
_resultLabel.text = result;
})i
})i

Avoid locks

Resource *myResource = ...;
dispatch queue t myQueue =
dispatch queue create(“com.example.myQueue”, NULL);

void doSomethingWithResource() {
dispatch async(myQueue, ~{
// do whatever with myResource

});

}
void doSomethingWithResourceAndWait() {

dispatch sync(myQueue, ~{
// do whatever with myResource

});

Parallelize loops

// A simple for loop
for (i = 0; 1 < count; ++i) {
output[1] = process(input, 1);

}

// Not as easy as OpenMP, but less trouble
dispatch apply(count, dispatch get global queue(
DISPATCH QUEUE PRIORITY DEFAULT, 0), "(size t i) {
output[i1] = process(input, 1);

)

GCD is not all magic

® APIs used concurrently must be thread-
safe / reentrant!

® Deadlock / Priority Inversion less likely but
still possible, i.e.

void deadlock(dispatch queue t queue) ({
dispatch sync(queue, "{
dispatch sync(queue, “{
// we never get here!
})i
})i

Real world example

® FreeBSD developer Robert Watson ported
the Apache HT TP server to GCD

® |mplemented as MPM (Multi-Processing
Module)

® GCD MPM had 1/2 to |/3 the number of
lines as other thread MPMs

GCD advantages

Multicore programming made easy

No need to mess with threads, thread
pools and locking issues

Think in tasks and task queues
Tightly integrated with Cocoa and Blocks

You'll be addicted to GCD once you know
it!

Summary

Blocks puts back the fun in (Objective-)C
programming (may also help C++)

New functional style programming, a lot
less code

GCD brings multicore programming to the
masses, no more threading headaches

Available with OS X 10.6+ and iOS 4.0+
and recent clang on other platforms

